
N90-29

Efficient Conjugate Gradient Algorithms for Computation of the Manipulator

Forward Dynamics

Amir Fijany and Robert E. Scheid

Jet Propulsion Laboratory, California Institute of Technology

Pasadena, California

Abstract

In this paper, we investigate the applicability of conjugate gradient

algorithms for computation of the manipulator forward dynamics. The
redundancies in the previously proposed conjugate gradient algorithm is

analyzed [7]. A new version is developed which, by avoiding these
redundancies, achieves a significantly greater efficiency. A preconditioned

conjugate gradient algorithm is also presented. A diagonal matrix whose
elements are the diagonal elements of the inertia matrix is proposed as the

preconditioner. In order to increase the computational efficiency, an
algorithm is developed which exploits the synergism between the computation

of the diagonal elements of the inertia matrix and that required by the

conjugate gradient algorithm.

I. INTRODUCTION

The manipulator forward dynamics problem, which concerns the determination

of the motion resulting from the application of a set of joint forces/

torques, is essential for the dynamic simulation of robot manipulators. The

motivation for devising fast algorithms for the forward dynamics solution

stems from applications which require extensive off-line simulation as well

as applications which require real-time dynamic simulation. In particular,

for many anticipated space teleoperatlon applications, a faster-than-real-

time simulation capability will be essential. In fact, in the presence of

the unavoidable delay in information transfer, such a capability would allow

a human operator to preview a number of scenarios before run-time [1].

The forward dynamics problem can be stated as follows: given the vector

of the actual joint positions (Q) and velocities (Q), and the vector of

applied Joint forces/torques (T), find the vector of the joint accelerations

(Q). Integrating Q leads to the new values for Q and Q. The process is then

repeated for the next T. The first step in the computation of the forward

dynamics is to derive a linear relation (for the given Q) between the vector

of joint accelerations and the vector of joint inertia forces/torques. Given

the dynamic equations of motion as

A(Q)Q + C(Q,Q) + G(Q) + Jt(Q)F z = • (I)

and the bias vector (b) as

b = C(Q,Q) + G(Q) + Jt(Q)F E (2)

the linear relation is derived as

A(Q)Q = z - b = r (3)

where A(Q) is an nxn symmetric, positive definite, inertia matrix and J is

329

the 6xn Jacobian matrix (t denote matrix transpose). Q, Q, _, T, b, F_R n,

and JrE is the 6xl vector which is a compact representation of the external

force (fE) and moment (nE) exerted on the End-Effector (EE). The bias vector

represents the contribution due to the nonlinear terms as well as the

external force and moment. Hence, F stands for the vector of applied inertia

forces/torques. The bias vector can be obtained by computing the inverse

d_amics, using the Newton-Euler (N-E) formulation [2], for the actual value

of Q, Q, and FE while setting Q to zero. The evaluation of b and F, i.e.,

the derivation of Eq. [3), is necessarily the first step in the computation
of forward dynamics.

The proposed algorithms for computation of the forward dynamics differ

in their approaches to solving Eq. (3), which directly affect their

asymptotic computational complexity. These algorithms can be classified as

O(n) algorithms [3]-[6], the O(n 2) algorithms [7], and the O(n 3) algorithms

[7]. However, any analysis of the efficiency of these algorithms should be

based on the realistic size of the problem, i.e. the number of Degrees-Of-

Freedom (IX)F). In fact, the comparative study in [3] shows that the O(n 3)

composite rigld-body algorithm is the most efficient for n less than 12. It

also shows that, due to the large coefficient of n2 terms on the polynomial

complexity, the conjugate gradient algorithm of [7] does not become more

efficient than the composite rigid-body algorithm except for very large n,
making the algorithm almost impractical.

In this paper, we develop two conjugate gradient algorithms which are

significantly more efficient than that of [7]. The better efficiency of

these algorithms is mainly achieved by a significant reduction of the

coefficient of n2 terms on the polynomial complexity. The first is a

Classical Conjugate Gradient (CCG) algorithm which improves the computation

cost of each iteration by eliminating the redundancy in the extrinsic

equations, i.e., by a better choice of coordinate frame for projection of

the intrinsic equations. With this reduction in the cost of each iteration,

a further efficiency can be achieved by reducing the number of iterations

through the use of a preconditloner. The second is a Preconditioned

Conjugate Gradient (PCC) algorithm which uses a positive definite diagonal

matrix, whose elements are the diagonal elements of the inertia matrix, as a

preconditioner. An efficient algorithm for computation of the diagonal

elements of the inertia matrix is also developed.

However, despite these improvements, the developed algorithms are, in

general, still less efficient than the best O(n 3) algorithm. It should be

pointed out that the efficiency of this algorithm is further increased by a

recently developed algorithm [8]-[9] which achieves greater efficiency in

computing the inertia matrix over the composite rigid-body algorithm in [7].

Despite the improvement in the efficiency of the serial algorithms, even the

fastest serial algorithm is far from providing the required efficiency for

real-time or faster-than-real-time simulation. This observation clearly

suggests that the exploitation of parallelism in the computation is the key

factor in achieving the desired efficiency.

330

The analysis of the parallel efficiency of different algorithms is more

complex than that of the serial efficiency [9]. Our investigation indicates

that the PCG algorithm presents excellent features for parallel computation

[I0]. In fact, the parallel version of the PCG algorithm, while requiring a

simple architecture, may potentially become the most efficient alternative

for parallel computation of the forward dynamics. In fact, such a potential

has motlvated us to further investigate the PCC algorithm and the impact of

the preconditioning on its convergence. In this paper the preliminary

results of our investigation are presented.

This paper is organized as follows. In Section II, the CCG and PCG

algorithms are briefly reviewed and the particular features of these

algorithms in the context of the forward dynamics computation are discussed.
In Section III, the CCC algorithm is developed. In Section IV, the PCC

algorithm and the algorithm for computation of the diagonal elements of the

inertia matrix are presented. Finally, some discussion and concluding

remarks are made in Section V.

II. CONJUGATE GRADIENT METHOD AND RESULTING ALGORITHMS

The conjugate gradient method is one of the most widely used methods for

the iterative solution of linear systems of equations such as

Ax = b x, b _ Rn (4)

where A_ _nxn iS a symmetric posltive-definite matrix. An attractive feature

of the method is the guarantee of the convergence in at most n steps. Several

developments have contributed to the wide application of the method [13];

they include analysis and experimentation leading to the identification of
the most stable versions of the method, an understanding of its error

propagation, and the fact that the solution of Eq. (4) arises in many

appl Icat ions.

The discussion given here is mainly based on the treatment found in [12]

where the basic algorithm is given as follows:

x = 0
0

r = 0
o

For j = 1, 2 n
if r : 0 then set x = x and quit

j-I]-1

else

t /rt r _i -=0 (5)
_] : rj-lrj-1 j-2 j-2

P] : rj-1 + _JPJ-I Pl = 0 (6)

= r t t (7)
_j j_lrj_l/pj Apj

x] xj_, + (8)= _jPj
= - (9)

r] r]_ I _jApj

X = X
n

This is the Classical Conjugate Gradient (CCG) algorithm which has been

analyzed in considerable detail under general conditions.

The interest in the conjugate gradient method has been further increased by

331

the development of the preconditioning strategies to accelerate convergence

of the algorithm. Furthermore, while theCCG algorithm and Its preconditioned

versions are not naturally suitable for parallel computation, they are well

matched for vector supercomputers, i.e., they can be efficiently vectorlzed
[13]-[14]. The key concept in achieving a faster convergence resides in

improving the condition of matrix A by preconditioning [12]. Let C be some

nonsingular symmetric matrix and define A = C-IAc -1, b = c-lb, and x = C-Ix.

Then the algorithm can be applied to the equivalent transformed system

x = b where for an appropriate choice of C the convergence may be

accelerated considerably. Let M = C2. The algorithm (for n steps) is written
as [12]:

x = 0
o

r = 0
0

For j = 1, 2 n

if r = 0 then set x = x
j-1 j-1

else

and qul t

Solve MZ = r for Z
j-1 j-1 I-I

_j = Z t r /Z t r B1 --- 0j-1 j-1 j-2 J-2

PJ = Zl-I + _JPJ-1 Pl -- 0

(10)

(11)

(12)

(13)

(14)

(15)

_j = Z t r /pt.j-1 j-1 J Apj

= x + _jpjxj J-*

= r - _jApjrl J-1

x -- x

This Is the Preconditioned Conjugate Gradient (PCG) algorithm and the

symmetric positive definite matrix _f is called the preconditioner. In order

for M to be effective as a preconditioner, it is essential to be able to

easily solve the linear systems in Eq. (I0). A well chosen preconditioner

can lead to rapid convergence, often after O(n */2) iterations [12]. Note

that if M -I = A-1, then the iteration converges immedlately. So one hopes

that when M-I = A-I (in some sense) the iteration converges very quickly. In

fact, this is what has been shown in [15]. As a result, if the matrix A is

diagonally dominant then M = Diag (A) may be an excellent preconditioner

since M closely approximates A. Furthermore, with the a diagonal matrix the

solution of Eq. (I0) is trivial. The choice of M = Diag (A) is known as

Diagonal Scaling or PCG-DS. Note that, compared to the cost of each

iteration of CCG, such a choice leads to only an additional cost of n

divisions per iteration of PCC-DS. Civen the faster convergence, this

represents an efficient tradeoff which explains the preference for the use

of PCG-DS over CCG even where A is not diagonally dominant.

However, the serial and parallel computation of the conjugate gradient
algorithms, when applied to the forward dynamics solution, differs from its

application to more generic problems. In fact, it is usually assumed that

the matrix A is given which is not the case for the forward dynamics problem.

332

For serial processing, note that, the basic operation In the CCG and PCG

algorithms is the matrix-vector multiplication in Eqs. (7) and (13) with the

computation complexity of O(n2). Given n iterations, this leads to O(n 3)

computational complexity of the algorithms. For forward dynamics problem,

this operation represents the evaluation of the vector of joint inertia

forces/torques, i.e., F(j), for a given vector of joint acceleration (pj),

which can be computed In O(n) steps, using the N-E formulation. This can

be done for CCG algorithm without explicit computation of A which has also

been exploited in [7]. Note that, the derivation of the dynamic models of

the industrial manipulators, in symbolic form, shows that their inertia

matrices can be practically considered as diagonal dominant [16]. Therefore,

the PCG-DS algorithm can be expected to achieve a rapid convergence In

solvlng the forward dynamics problem. However, the application of PCG-DS

algorithm requires the computation of the diagonal elements of A. Hence, the

algorithmic efficiency In computing the diagonal elements is a key factor in

the successful application of PCG-DS algorithm to the forward dynamics

solution.

In the context of the forward dynamics solution, the CCG and PCG-DS also

provide suitable features for parallel processing. Exploiting maximum

parallelism, the matrix-vector multiplication in Eqs. (7) and (13) can be

performed in O(log2n) steps with O(n 2) processors. However, besides using

too many processors, exploitation of maximum parallelism requires a complex

processor interconnection. For the forward dynamics problem, this operation,

as is shown in [18], can De performed in O(log2n) steps with n processor and

a rather simple interconnection. This leads to the O(nlog2n) parallel CCG

algorithm. It is shown that, using the same architecture as in [18], the

diagonal elements of the inertia matrix can be computed in O(log2n) steps

[II]. Thls implies that, if PCG-DS algorithm converges in O(n I/2)

iterations, then its parallel version can achieve a computational time of

O(nl/21og2n) with n processor and a simple processor interconnectlon

structure. In fact, the parallel PCG-DS may represent the fastest stable

algorithm for computation of the forward dynamics problem [I0].

III. THE CCG ALGORITHM

III. 1 Notations and Preliminaries

The N-E formulation can be expressed as a function gl which, given Q,

Q, "Q, and Fz, evaluates T as [4]:

T = gI(Q,Q,[_,F z] (16)

The matrix-vector operation in Eqs. (7) and (13) Is a special application of

gl which evaluates a set of vectors of inertia forces/torques as:

r(j) = g,(Qa,o,l_j,o)= g_(Qa,'(_j) (17)

where Q is the vector of joint positions representing the manipulator's
a ,t

configurations for which Eq. (17) is evaluated for a set of Qj's.

333

zi+1

x i

Fig. 1. Link, Frames, and Kinematic and Dynamic Parameters

!

!

Ic

F and N
! !

f and n
! !

position, veloclty, and acceleration of joint i, respectively.

Angular acceleration of llnk i

Linear acceleration of llnk i (point 0).
i

Linear accelerations of center of mass of link i (point cm).
i

Force and moment exerted on center of mass of link i.

Force and moment exerted on link i by link i-I.

Table I. Notion Used in the Derivation of the Algorlthms.

The major redundancy in the evaluation of Eq. (17) by the algorithm of [7]

results from the choice of coordinate frame for projection of the intrinsic

equations. Note that the evaluation of the original N-E formulation in link

coordinate frames requires O(n) transformations for llnk-to-link propagation

of the variables. Hence, using the llnk frames for n times evaluation of Eq.

(17), as is done in [7], requires O(n 2) transformations. However, if n times

evaluation of Eq. (17) is performed in a fixed frame then only O(n)

transformations for projection of the vectors and the tensors are required.

In deriving the algorithms, we first develop the intrinsic equations,

i.e., the coordinate-free representation of equations. This provides a

suitable abstraction since the equations can be derived from the intrinsic

physical relationships, which are independent of any coordinate frame. More

important, this allows us to distinguish between the redundancy in the

intrinsic and that in the extrinsic equations. In order to derive the

intrinsic equations, we need to recall some notations. In this paper,

according to Gibbs notation, vectors are underlined once and tensors

(tensors of order 2) twice. The projection of the vectors and the tensors

results in 3xi (column matrix) and 3x3 scalar matrix wherein the superscript

denotes the coordinate frame on which the projection is performed. To any
^

vector V a tensor V can be associated whose projection is a 3x3 skew

symmetric scalar matrix as:

0 -V V
^ (z) (y)

V = V 0 -V
(z) (x)

-V V 0
(y) (x)

334

^ ^

Note that V V = V xV = -V xV = -V V . Also, a set of notations, presented
e mI=1-'2 --1 --2 --2 --1 ----21

in Fig. 1 and Table I, are used in the derivation of the algorithms.

III.2 A Variant of The N-E Formulation

Let us write the N-E formulation for link I (Fig. I) with the nonlinear

terms being excluded.

= _ + .. (18)
_i i-I zlql

9 =V +_ xP (19)
--i --1-1 --1-1 --1-1

9 = _ + _x s (20)
--Ic --I --I --I

F = m _/ (21)
-I I-Ic

N = J _ (22)
--I =I--I

f = F + f (23)
--I --i --I+1

n = N + S x F + n + Px f (24)
--i --i --i --I --I+I --i --I+I

F = z .n (25)
1 --i --1

where F is the ith component of F which indicates the inertia force/torque
l

of joint i. Eqs. (18)-(2S) describe the procedure for computation of the

vector F(j) or the function g2" Note that, for the sake of simplicity, an

all revolute joints manipulator is considered. However, with small changes,

the results can be extended to the manipulator with sliding joint(s).

A variant of g2 can be derived by replacing Eqs. (20)-(22) into Eqs.

(23) and (24) as

f = m _/ + _i x (miS__i) + f (26)--I I--I -- --i+l

n = J _ + S x [miV i + _ x (miSi)] + n + P x f--I ml I --I -- I -- --i+l --i --I+1
^ ^

= (Jl - m S S)_ + (m S)x V + n + P x f (27)= I=I=I I i--I --I --i+l --i --I+I
^ ^

The terms J-m S S and m S represent the first and the second moment of
=i 1=i ml i --1

mass of link 1 with respect to point 01 which are designated as =lk and -lh,

respectively. Note that k I and hi are constant in link i coordinate frame,

i.e., coordinate frame i+1, and can be given as the link parameters. The

variant of the N-E formulation for computation of the vector F, designated

as g3' is written as:

= 6) + .' (28)
--i --i-i zlql

9 = _ + _ x P (2s)
--i --i-1 --1-1 --i-1

f = mV + _x h + f (30)
--i I--I --I --I --I+I

n = k_ + hx V + n + P x f (31)
--I :I--I --I --i --I+I --I --i÷l

F = z . n (32)
i --I --i

In the above procedure the explicit computation of the linear acceleration

of, and the force and the moment exerted on, the link's center of mass is

avoided. Note that the computation cost of g2 and g3 is the same. However,

335

if the equations of both procedures are projected on some fixed coordinate

frame then evaluation of g2 requires the transformation of Ji and Si while

that of g3 requires the transformation of k i and h{. For the CCG algorithm,

since the evaluation of the original N-E formulation, i.e., El' requires the

transformation o£ Ji and Si, it is more efficient to use g2" However, g3

will be used to derive the algorithm for computation of the diagonal

elements of the inertia matrix and the evaluation of r in PCG-DS algorithm.

III.3 Computation of the CCG Algorithm

As stated before, It is more efficient to project the equations on some

fixed frame. To do so, PI' S_i, zi, and :!J should be projected onto the fixed

frame. We use the EE (n+l th) coordinate frame which is slightly more

efficient since P-'n S-n' _n' and J_n are constant in this coordinate frame.

Let m and a denote the cost of multiplication and addition, respectively.

The computational steps of the CCG algorithm are performed as follows where,

for each step, Its computational cost is also indicated.

Step 1: Projection of the vectors and the tensors

For i = I, 2 n

1) Evaluate l*lR
l

2) n÷lR = n+lR I+IR (33)
I I+1 I

3) n+lz n+lR == z With z [0 0 1] t (34)
! ! 0 0

4) n+ls = n+lR iS (35)
i 1 1

5) n+lp = n+l R Ip (36)
1 1 1

6) n+lj = n*l R Ij iR (37)
I I i n+l

The computation cost o£ this step is obtained as 4nm + (n-1)(96m + 63a). In

the following the absence of the superscript denotes that the vectors and

the tensors are described with respect to the EE coordinate frame.

Step 2: Computation of r = • - T
0 a

1) Compute Ta = gl(qa,Qa,Qa,Fe)

a) For i = 1, 2 n

: to + Zl(_tol 1-1 al

+ to X " + Z_(_1 : (_1-1 1-1 Zlqal I al

= V + _ x P + to x(to x P
I I-I I-I i-I i-I i-I

= V + & X S + to x(to X S)
ic 1 1 i i 1 i

F =m_
1 1 lc

= + toix(Jltol)N i Jill

b) For i = n, n-1 1

f =F +f
i i i+l

)
I-1

to =0
1

& =0
1

= GZ
1 1

f =f
n+l E

(3_)

(39)

(40)

(41)

(42)

(43)

(44)

336

General n = 6

Algorithm
Mul. Add. Mul. Add.

CCG in [7] 76n2+120n-21 66n2+87n-6 3435 2632

This paper 47n2+177n-117 46n2+118n-87 2637 2277

Table II. Comparison of the CCG algorithms

= N + S x F + n + P x f n = n (45)
nl I i i I+I i I+I n+1 E

T = n .Z (48)
a! i l

2) Compute r = T - T (47)
0 a

Note that G = 9.8061m/s 2 denotes the acceleration due to the gravity which

is along the direction of zI. The cost of this step is n(B7m+78a)-(21m+24a).

The rest of the computation is carried out according to Eqs. (5)-(9) where

the matrlx-vector operation in Eq. (7) is performed by using the function

g2(Qa, pj). Each iteration of Eqs. (5)-(9) requires n(47m+46a)-(lOm+23a)

which, taking n iterations, leads to the total cost of the CCG algorithm as

n2(47m+46a)+n(177m+l18a)-(117m+87a). The cost of the developed algorithm is

compared to the CCG algorithm of [7]. Note that the algorithm of this paper

achieves a better efficiency by a significant reduction in the coefficient

of n2 terms.

IV. THE PCG-DS ALGORITHM

IV. 1 An Algorithm for Computation of the Diagonal Elements of Inertia Matrix

From Eq. (3) the diagonal elements of the inertia matrix can be

computed as

a = r (48)
li i

for the conditions given by

• = 0 For k = 1, 2, ..., n (49)
q! = 1 and qk_!

An algorithm for computation of the terms all, using g3' can be derived as

aii = g3i(qai,el) (SO)

where subscript I denotes that g3 is evaluated for the last n-l+l links, Qa!

is the vector of actual position of the last n-i+l Joints. e i is an ixl

vector as e = [1 0 ... O] t. With the conditions given by Eq. (49), let
l

_) and V and f and n (j>i) stand for angular and linear
J(1) J(1)' J(!) J(!)

acceleration of, and force and moment exerted on, llnk j (point Oj) due to

the unit acceleration of joint i. For link 3, Eqs. (28)-(31) are written as

337

--J (l) --I

= zxP
-j(1) -i -j,i

f = m (z_IxP__j) + z x h + f-J (i) J , i -i --J -J + 1 (i)

n
--J(l) = k z + hjx(zlxPj,i) + n + P xf=J--i --J+l(1) --] --]+1(i)

and, for link I, these equation are written as

= Z
--i--l(l)

0
--l(l)

=0

f =zxh + f
--1 (i) --I --i --1 + 1 (i)

n =kz + n +Pxf
--1(1) =i--i --i+l(l) --1 --i+1(1)

a =F = z.n
t i i --i --i (i)

Using Eqs. (51)-(54), Eqs. (57)-(58) can be rewritten as

n [m Z__lx%] z--ix [h Z nf = z xh + _,. (z xP) + = +
--i(i) --1 --i k=i+l k--i --k,i i k=l+l

[h Z n f [%]
= zx + mP + m P + = zxH

--i I k=l+l k--i k=i+l k+l--k,l --1 --I

n
--1(1)

n

=kz +[=i --i
k=i+l

l
k=l+l

[k--"kZ l+- - %X(Z--iXP--k, l) + P--'k,i x[mk (Z_! xP._k,!) + Z-iX%]]

(51)

(52)

(53)

(54)

(55)

(56)

(S7)

(58)

(59)

(60)

- - z i = K z (61)-m P P h P P
k-----'k, i------k, i ----'k-----k,i

Note that the conditions given by Eq. (49) imply that link i through link

n do not have any relative motion, i.e., are rigidly connected, and form a

composite rigid-body. In comparison with Eqs. (57)-(58), H and K represent
-i =i

the first and the second moment of mass of the composite system composed of

link I through llnk n (denoted as composite system I) about point 0 . From
i

Eqs. (60)-(61), the pecursions for computation of H and K are derived as
--i _--1

(hi+l+ Z n [m P--k %]
H = h + M P + + = h + M P + H (62)

--i --i I+1--i k=l+2 k ,I+2 --I i+l--i --i+l

where M is the mass (zeroth moment mass) of the composite system i+l, and
I+1

okK = k + T,. -mP P - hP - = k +k----k,i----'ki ----k----'k, i 1 =i
=i =i k=i+1 ' '

^ ^ ^ "I

n [k-m (P +P)(P +P) -h (P +_) - (P_.k,l+t+_i)h__..k
_k=i+tL--k k =k,l+l =I -----'k,i+t=I mk ----k,l+l I]

which after some manipulations and by using Eq. (62) can be written as

.... (k_ zn [k_.k ^ ^
K = k+ M PP- H P- PH + + - mP P -
=I =i l+l--l:i =i+l=i :i=i+l i+l k=l+2 k------k,I +l------k,I+I

338

qhp - P = k-M PP- H P- PH + K (63)
-----k----k,i+1 ,i÷1 --I 1+1--1--1 --1÷1--I -'I--I+1 =I+1

The diagonal elements o£ the inertia matrix, or H = Diag(A), are computed as

For i = n, n-l, ..., 1

M = M + m M = m (64)
I I+1 I n n

H = h (65)H=h+M P+H
--i --I I+1--I --I+1 --n --n__ ^ ^ ^
K = k + k - M PP - H P - P H K = k (66)
:i :i :I÷1 l+l:i=i =I+1:i _I=I+1 =n _n

a = k .z (67)
11 =! --I

It should be pointed out that Renaud [17] used the notion of augmented-

body to derive the equations similar to Eqs. (62)-(63). However, our

derivation of Egs. (62)-(63) shows that this notion is implicit in the N-E

formulation. The improved efficiency of the above algorithm, compared to the

composite rigid-body algorithm in [7], results from the elimination of the

redundancy in the intrinsic equations. Note that by directly computing the

first and second moment of mass of composite system i about point 01 the

redundant computation of the center of mass of composite systems and the

force and moments acting on the centers of mass are avoided (see [8] for

more discussion regarding these two algorithms).

IV.2 Computation of the PCG-DS Algorithm

Eqs. (64)-(67) describe the intrinsic relation between the diagonal

elements of the inertia matrix, which are scalar, and the links kinematic

and dynamics parameters, which consist of scalars, vectors, and tensors. In

order to compute the diagonal elements, Eqs. (65)-(67) should be projected

on some coordinate frame. Due to the evaluation of gl and g2(or g3) in EE

frame, it is more efficient to project Eqs. (65)-(67) on this frame which

allows the exploitation of synergism in different computations. To do so

h i and kl need to be evaluated in EE frame and then Hi, KI, and all can be

computed from Eqs. (65)-(67) with the vectors and tensors being described

with respect to EE frame. The cost of evaluating _ is then obtained as

(n-l)(Slm+5Oa) where the symmetry of matrices in Eq. (66) is exploited. Note

that the additional cost of PCG-DS algorithm, due to the evaluation of M, is

almost equal to one iteration of Eqs. (3)-(9) for CCG algorithm. The best

algorithm for computation of inertia matrix requires n(69m+62a)-(37m+38a)

for evaluation of the diagonal elements [8]. Hence, the geater efficiency of

the developed algorithm results from the exploitation of synergism in

different computation. Having computed H, the second step of the PCC-DS

algorithm Is performed similar to CCG algorithm and the rest of the

computation is carried out according to Eqs. (10)-(13).

V. CONCLUSION

In this paper we investigated the applicability of conjugate gradient

algorlthms for computation of the manipulator forward dynamics. Two

algorithms were presented and their computational efficiency was analyzed.

The preconditioned algorithm is particularly promising because of its

potentially rapid convergence as well as its suitability for parallel

computation. We are currently investigating in greater detail the effect of

339

the preconditioner on the convergence of the algorithm. This work includes

analysis of error estimates as well as simulations with actual manipulators.

ACKNOWLEDGEMENT

The research described in this paper was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under the contract with the
National Aeronautics and Space Administration (NASA).

References

I. M.H. Milman and G. Rodrlguez,"Cooperative Dual Arm Manipulator Issues

and Task Approach," JPL Eng. Memorandum (internal document), Nov. 1987.

2. J.Y.S. Luh, M.W. Walker, and R.P. Paul,"On-llne Computation Scheme for

Mechanical Manipulator," Trans. ASME J. Dyn. Syst., Meas., and Control,

Vol. 102, pp. 69-78, June 1980.

3. R. Featherstone, Robot Dynamics Algorithms. Ph.D. Dissertation, Univ. of

Edinburgh, 1984.

4. R. Featherstone,"The Calculation of Robot Dynamics Using

Articulated-Body Inertia,"Int. J. Robotics Research, Voi.2(2), 1983.

5. G. Rodriguez,"Kalman Filtering, Smootlng and Recursive Robot Arm Forward

and Inverse Dynamics," IEEE Trans. Robotlcs&Automation, Vol. RA-5, Dec.

1987. Also in Jet Propulsion Laboratory Publication 86-48, Dec. 1986.

8. C. Rodriguez and K.K. Kreutz,"Recursive Mass Matrix Factorization and

Inversion: An Operator Approach to Open and Closed Chain Multibody

Dynamics," Jet Propulsion Laboratory Publication 88-11, May 1988.

7. M.W. Walker and D.E. Orin,"Efficlent Dynamic Computer Simulation of

Robotics Mechanisms," Trans. ASME J. Dyn. Syst., Mess., Control,

vol. 104, pp. 205-211, Sept. 1982.

8. A. FiJany and A.K. Bejczy,"An Efficient Method for Computation of the

Manipulator Inertia Matrix," Submitted to the J. of Robotic systems.

9. A. Fijany, Parallel Algorithms and Architectures in Robotics. Ph.D.

Dissertation, Univ. of Paris XI (Orsay, Paris Sud), Sept. 1988.

10. A. FiJany and A.K. Bejczy,"Parallel Algorithms and Architecture for

Computation of the Manipulator Forward Dynamics," Submitted to IEEE

Trans. Syst., Man, and Cybernetics.

Ii. A. Fljany and A.K. Bejczy,"Parallel Algorithms for Computation of the

Manipulator Inertia Matrix," Submitted to IEEE J Robotics & Automation.

12. G.H. Golub and C.F. Van Loan, Matrix Computation. The Johns Hopkins Univ.

Press, Baltimore, Maryland, 1983.

13. D.P. O'Leary,"The Block Conjugate Algorithm and Related Methods," Linear

Algebra and its Applications, Vol. 29, pp. 293-322, 1980.

14. M. K. Seager,"Parallelizing Conjugate Gradient for the Cray X-MP,"

Parallel Computing, Vol. 3, pp. 35-47, 1896.

15. P. Concus, G.H. Colub, and D.P. O'Leary,"A Generalized Conjugate Gradient

Method for the Numerical Solutlon of Elliptic Partial Differential

Equations," in Sparse Matrix Computation, J. R. Bunch, and D.J. Rose

(Eds.), Academic Press, New York, 1976.

16. J. Chen,"The Effects of Gear Reduction on Robot Dynamics," Proc. of NASA

Conf. on Space Telerobotics, JPLPubllcaUon 89-7(thls proceedings).

17. M. Renaud,"An Efficient Iterative Analytical Procedure for Obtaining a

Robot Manipulator Dynamic Model," Proc. Ist. Int. Symp. on Robotics

Research, 1983.

18. C.S.G. Lee and P.R. Chang,"Efficient Parallel Algorithms for Robot

Forward Dynamics Computation," IEEE Trans. Syst., Man, and Cybern.,

Vo1. 18(2), pp. 238-251, March/April 1988.

340

